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Abstract 

A procedure has been devised which uses both the 
estimates of the one-phase seminvariants of first rank 
via their second representations and the estimates of a 
special class of two-phase seminvariants via their first 
representations in order to obtain accurate estimates of 
the one-phase seminvariants. 

1. Introduction 

Probabilistic theories for the estimation of the 
one-phase seminvariants of first rank were supplied by 
various authors (e.g. Hauptman & Karle, 1953; 
Cochran & Woolfson, 1954; Naya, Nitta & Oda, 
1964; Weeks & Hauptman, 1970). 

The M U L T A N  procedure (Germain, Main & 
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Woolfson, 1971) applies the Y.~ formula to find the 
probable signs of centric one-phase seminvariants: 
each sign determination can be incorporated into the 
starting set in order to make the phase determination 
process more efficient. Owing to the frequency of 
failures, a cautious use of one-phase seminvariants is 
suggested. In particular: (i) an appropriate weighting 
scheme is associated with Y l relationships in such a 
way that, when one is incorrect, the tangent formula 
refinement can handle the situation and lead to a 
correct set of phases; (ii) high sign probability values 
are required for the default use of the ~1 relationships. 

These problems suggested to Karle (1970) and to 
Overbeek & Schenk (1976) that the passive use of 
one-phase seminvariants is the most convenient way of 
exploiting their phase information. In particular, Karle 
deemed that ~ relationships should be used at the end 
of a symbolic addition procedure in order to decide 
among the possible alternatives for a symbol. Overbeek 
& Schenk (1976) formulated a criterion based on Y l 
relationships which can be used to select the correct 
solution in multisolution procedures. Joint probability 
distributions involving sets of structure factors larger 
than those exploited by the Y~ relationships were 
studied by various authors in order to obtain more 
accurate estimates of the one-phase seminvariants. For 
example, P(E2h, E k, Eh+k) was studied by Hauptman & 
Karle (1953) and Cochran & Woolfson (1955); P(E2h, 
E~, Ek, Eh+k) by Cochran (1954) and by Hauotman & 
Karle (1957); P(E2h, Eh, Ek, Eh+k, Ezh+k) and 
P(Ezh, Eh, Ek, Eb-k, E2h-k, Eh+k) by Giacovazzo 
(1976, 1975). 

More recently, the theory of representations 
(Giacovazzo, 1977) has given new insights into 
probabilistic methods for obtaining accurate estimates 
of one-phase seminvariants of first rank. In accor- 
dance with this theory a one-phase seminvariant of first 
rank gha may be represented (via its first repre- 
sentations) by means of triplet and quintet invariants, 
the value of which differ from ~0n by constants which 
arise because of translational symmetry. In particular: 
(i) The triplet invariants 

[~¢1 = ~ H -  (Ph + (~hR., 

where the vectors h and the matrices R n can be found 
by solving the equation 

H = h ( I -  Rn). (1) 

The solution of (1) may be obtained by application of 
the generalized inverse matrices as described by 
Giacovazzo (1980a). The collection { ~, } t of the triplets 
V1 constitutes the first representation of On. The 
estimate of ~0n via its first representation coincides with 
that provided by the Z~ relationships. 
(ii) The quintet invariants 

I//2 = (~1 -- q)h "l- q~hR. -- 09kRj + q)kR/, j = 1,.. . ,  r, 

where h varies over the set of vectors defined in {~,}1, 

R, over the subsets of matrices which satisfy (1) and Rj 
varies over the subset of the r matrices not related by 
the centre of symmetry. That is, r = m/2 or r = m (m is 
the order of the space group) according to whether the 
space group is centrosymmetric or not. k is a free 
vector which sweeps over the asymmetric region of the 
reciprocal space. 

Probabilistic formulae estimating q~n via its first and 
second representations were secured by Giacovazzo 
(1978). Burla, Nunzi, Polidori, Busetta & Giacovazzo 
(1980) tested these formulae on various structures of 
different complexity, covering the symmetry classes i, 
2, 2/m, 222 and mm2. The estimates of one-phase 
seminvariants via the second representation were found 
to be considerably more accurate than the corres- 
ponding estimates via the first representation. In 
particular, the number of seminvariants estimated with 
high probability value was always larger than for the ~1 
estimates, and, as a rule, they are correctly estimated. 
These results suggest again the active use of one-phase 
seminvariants in the direct procedures. 

We are thoroughly conscious of the great impor- 
tance of knowing a number of seminvariant phases at 
the beginning of a multisolution procedure. Then: (i) 
the phase determination process is faster and more 
accurate; (ii) the necessity of introducing a large 
number of variable phases in the starting set is reduced. 
We have therefore devoted our efforts to improving 
further on the estimates of the one-phase semin- 
variants. In this paper we describe a new procedure 
which uses some recent advances in the theory of 
representations in order to obtain, in all the space 
groups up to orthorhombic, some very accurate esti- 
mates of the one-phase seminvariants via the esti- 
mation of special two-phase seminvariants. 

In § 2 we show how the concept of generalized first 
representation recently introduced by Giacovazzo 
(1980a) may be applied with some modifications to the 
estimation of the two-phase seminvariants of first rank. 
In § 3 it is shown how the estimates of the two-phase 
seminvariants can be improved by probabilistic 
relations involving three or four two-phase semin- 
variants which form tripoles or quadrupoles. In § § 4 
and 5 an automatic procedure is described which leads 
to the accurate estimate of the one-phase seminvariants. 
In § 6 the practical applications of the procedure to 
some test structures are described and conclusions are 
drawn. 

2. An application of the concept of generalized phasing 
shell 

We recall the concept of a generalized first phasing 
shell only with respect to the two-phase seminvariants 
of first rank. Let • = ~0u + ~0v be a two-phase 
seminvariant in which ~0, and q~v are one-phase 
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seminvariants. If {B} 1, {B'}I, {B"} 1 are the first 
phasing shells of q~, ~o,, and ~0v respectively, then the set 
theoretical union 

{B}]= {B} 1U {B'}I U {B"}I (2) 

is said to be the generalized first phasing shell of ¢ .  It 
was shown by Giacovazzo (1980a) that the estimate of 
¢ via {B}] is expected to be more accurate in the 
statistical sense than via {B }1. When ~P is estimated via 
the set {B }i, then we say that ¢ is estimated via its first 
representation. A probabilistic theory which estimates 
¢ via {B} 1 was secured by Giacovazzo (1979): the 
practical aspects of this theory together with extensive 
applications were described by Giacovazzo, Spagna, 
Vickovi6 & Viterbo (1979). When q~ is estimated via 
{B} g then we say that it is estimated via its generalized 

first representation. 
We give two practical examples in order to clarify 

the situation. In P1 let q~ = ~0842 + (o266. Then the first 
representation of • is the collection of the two quartets 

I/'/1 ~--- (/9842 "[- ~266 --  ~ 5 5 4 -  (ff554' 

Iff~ = ~842 --  ~ 2 6 6 -  (P3r~- (03 i'2" 

The first phasing shell {B}~ contains all the basis and 
the cross magnitudes of the two quartets: 

{B}l = {R842, R266, R554, R3i~, Rlo, lo,8, R6:~4 }, 

where the R's symbolize the I EI magnitudes. Since ~0842 
and (P266 are one-phase seminvariants, they depend, in 
their first representation, on the first phasing shells 

{B'}I  = {R842, R42,}, 

{ B " } l  = {R266, R133} , 

respectively. Therefore, according to (2), 

{B} ] = {R842, R266, R554, R3i~, Rlo, lo,8, R6~4, R421, R133}. 

As a second numerical example, in P 2 ,  let q~ = ~802 
+ ~0204. Then the first representation of • is the 
collection of quartets 

respectively. Therefore, according to (2) 

{B}g = {R802, R204, R5k3, R3ki, R 10:0,6 , R60~, R4kl, RIk2}. 

So far no probabilistic formula estimating qJ via its 
generalized first representation is available. Thus we 
have used an approximate mathematical approach 
based on the reasonable assumption that the estimates 
of q~, q~. and ~ov via their mere first representations are 
independent of one another. 

Let P+, P+ and P¢ be the sign probabilities for q~, ~p,, 
and ~0v as given by their first representations. From P¢ 
and P+ the following sign probability arises for ~0. + ¢Pv: 

P+ = P+ P+ + (1 -- P+)(1 -- P+). (3) 

P+ is then composed with P+ in order to give the overall 
sign probability (Woolfson, 1961). 

P+ 
P$ = . (4) 

P~ P+ + ( I -- P~-)( 1 -- P+) 

The value of (4) may be considered a reasonable 
estimation of ¢ via its generalized first representation. 

We have tested the efficiency of (4), with respect to 
P+ as calculated by Giacovazzo, Spagna, Vickovi6 & 
Viterbo (1979), on seven known structures of different 
complexity. Table 1 shows the reference and the most 
relevant features of the test structures, the results of 
which are discussed in this paper. Our results proved 
that P$ is always more reliable than P+. That  convinced 
us that better estimates of # can be obtained by a slight 
modification of the procedure. 

We now introduced in (3) not the sign probabilities 
calculated via the first representations of ~0,, and ~0v but 
those arising from their second representations. Since 
the latter proved to be more reliable than the former 
(Burla et al., 1980), better P+ values and, conse- 
quently, more accurate values of P$ can be expected. 
We give in Tables 2 and 3 the outcome for T O X E  (N = 
104, P212121) and A Z E T  (N = 192, Pca21). In the 
tables the phase seminvariants are estimated via their 

I//1 = ~802 "+" (/7204- ~5k3 "+" (P5-k3' 

where k is a free index. The first phasing shell {B} l is 
then 

{B}I = {R802, R204, Rsk3, R3ki, R 10,0,6, R60~}. 

Since q)s02 and ~0204 are one-phase seminvariants, they 
depend, in their first representations, on the phasing 
shells 

{B'}, = {R802, R4k 1 } 

and 

{B"}I = {R2o4, RIk2} , 

Table 1. Abbreviations, references, space groups and 
formulae for  the seven test structures 

Space 
References group Formula Z 

RIBO James & Stevens (1977) P21 Cl3HlaO 9 4 
HEPTA Beurskens, Beurskens & P21 CsoH~8 4 

van den Hark (1976) 
METHOX Hanson & Nordman P2Jc C~sHz202 4 

(1975) 
TOLY Brufani, Cellai, Cerrini, P2~2~21 C37H43NO~s 4 

Fedeli & Vaciago (1978) 
TOXE Cerrini, Fedeli, Gavuzzo P212j21 C21H350 5 4 

& Mazza (1975) 
KARLE Karle, Karle & Estlin P212~2 , C12HlsNO 4 4 

(1967) 
AZET Colens, Declercq, Pca2~ C2~HI6CINO 8 

Germain, Putzeys & 
Van Meerssche (1974) 
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Table 2. TOXE: Number of two-phase seminvariants 
(n) and percentage of correct relations (%) calculated 
via their first representation (columns A), equation 

(4) (columns B)and equation (10) (columns C) 

The two-phase seminvariants are constructed starting from the 
one-phase seminvariants with IEI ~ 1.55. 

A B C 

A R G  % n % n % n 

0.3 84.2 38 93.4 61 97.4 117 
0.6 100 16 100 46 100 106 
0.8 100 10 100 42 100 102 
1.0 100 6 100 36 100 93 
1.2 100 5 100 30 100 79 
1.4 100 1 100 24 100 78 
1.6 100 1 100 18 100 77 
2.0 100 1 100 10 i00 77 
2.5 100 4 100 76 
3.0 100 1 100 76 

Table 3. AZET: Number of  two-phase seminvariants 
(n) and percentage of correct relations (%) calculated 
via their first representation (columns A), equation (4) 

(columns B)and equation (10) (columns C) 

The two-phase seminvariants are constructed starting from the one- 
phase seminvariants with IEI > 1.30. 

A B C 
A R G  % n % n % n 

0.3 83.9 31 90.7 43 97.5 79 
0.6 100 12 100 30 100 70 
0.8 I00 9 100 26 100 62 
1.0 100 4 100 22 100 53 
1.2 100 4 100 18 100 49 
1-4 100 4 100 17 100 48 
1.6 100 4 100 16 100 48 
2.0 100 4 100 11 100 47 
2.5 100 3 100 8 100 47 
3.0 100 3 100 8 100 47 

first representations by means of equation (36) of 
Giacovazzo et al. (1979): 

P+ ~_ 0.5 + 0.5 tanh ARG. 
In order easily to compare the accuracy of P+ with 

that of P-l; we also calculated for any. value P$ the 
corresponding value of ARG. Therefore Tables 2 and 3 
show an analysis of the number of corrected sign 
indications for the relations having the value of I ARGI 
above the limits shown in the first columns. The higher 
reliability of (4) is clearly shown by the tables. 

3: Improved estimates o f  @ by means of  multipoles 

A basis of representations theory (Giacovazzo, 1977) 
is the phase interrelationship principle according to 
which if #1, #2, .... ~n are n seminvariants for which 
~.7=1 #i = 0 and if {R}j, j = 1, ..., n, are n subsets of 
magnitudes for which the following conditional distri- 

butions may be calculated 

P(~il~ll {R }1), (5.1) 

P(¢21 {R }2), (5.2) 

P( ~n I { R },), ( 5.n) 

then the estimate of q~ via 

{R}u= {R}I t3 {R}2 U...  U {R}, (6) 

is ,in principle more accurate in the statistical sense than 
that given by (5.1). 

We apply this principle to tripoles of type 

-- ~1 = (ou + ¢Pv (7.1) 

q~2 = --~0u + ~ (7.2) 

~3 =--(Ok- ~Pv. (7.3) 

In our context ~1, #2, ~3 are estimated according to 
§ 2. In other words, {R }1 is the subset of magnitudes 
contained either in the first phasing shell of ~1 or in the 
second phasing shells of ¢p, and ~0v; {R }2 is the subset, 
etc. 

So far no probabilistic formula estimating # via {R }~ 
is available. However, if the estimates of ~, ~2 and ~3 
are assumed independent of one another, then the 
following mathematical approach may be used. Let P$, 
P~2, P$3 be the sign probabilities for q~, ~2, ~3 
calculated according to § 2. Then the additional sign 
probability 

P$,k = P$2 P$, + (1 - PSi)(1 -- P+) 

arises for q~ from the mere estimates of q~z and q~3. 
Since k is a free vector in (7), more tripoles may be 
found for a given @. The various P$,k~ Can be multiplied 
together to give the overall probability (Woolfson, 
1961) 

In its turn Pb+ may be composed with P$ by means of 

P~+ P$ 
P $ , ,  - 

Pb+ P~ + ( 1 - P~+)( 1 - P$)" 

In addition to the tripoles, the quadrupoles 

--= ~1 = ~Pu + ¢Pv (8.1) 

~2 = --~0u + ~ (8.2) 

¢'3 = - q ~  + (Pp ( 8 . 3 )  

~4  : - - ~ P -  ~v (8.4) 

can also be exploited in order to improve the estimate 
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of 0. Let us assume that the estimates of • -- • 1, • v 
• 3, • 4 are independent of one another. We denote by 
P$, P~, P-$,, P;~, the sign probabilities for 0, O2, O3, O 4 
calculated according to § 2. The mere knowledge of 
PSi, P$,, P$, gives for • the additional sign probability 

P$,k,| = 4 P$~ P$~ P$, -- 2 P~  P$~ - 2 P$~ P$, - 2 P'$~ P+ 
+ P$, + P$, + P$,. 

Since k and I are free vectors in (8), more quadrupoles 
may be found for a given O. The various P$,k,,Ij may be 
multiplied together to give the overall probability 

1-I 
"°r" t , j  . 

In our approach we also assume any P;,kj to be 
independent of any P$,k,,|~. Therefore the formula 

P~+= + ~-~/  (9) 

may be used, where P~ symbolizes + + P~,kj and P~,k,aj. 
In its turn Pb+ is composed with P$ by means of 

P~+ P$ 
P$,t = p,++ p $  + (1 --  P~+ )( 1 -- P$  ). " (1 O) 

Equation (10) is really more reliable than (4). We give 
in Tables 2 and 3 the number and the percentage of the 
correctly estimated two-phase seminvariants according 
to (10) (columns C), compared with the corresponding 
figures obtained via P+ and P$. 

4. The estimation of the one-phase seminvariants 

We are now able to obtain, from the improved 
estimates of the two-phase seminvariants, improved 
estimates of the one-phase seminvariants. In fact, if P$,t 
[as given by (10)] and ~ (as calculated via the second 
representation of ~P0 are known, then the additional 
sign probability 

• ' +  P $ , t  P+ + Pu = (1 - - P $ , t ) ( 1 - - P $ , t )  (11) 

arises for Ou. Since any Ou may enter in several 
two-phase seminvariants, several probabilities such as 
(11) may be calculated which may be combined by 

- I  ud --1 
J p0+ = + - -  . (12) 

1-I Pu+j 
J 

P'~ are the sign probabilities [according to (11)] arising 
from thejth two-phase seminvariant containing 0.,. 

5. The procedure 

The basic steps of our procedure are: 
(a) Calculation of the one-phase seminvariants via 

their second representation for the reflections with the 
largest E values. P+ is the outcome of this step for any 
reflection E,. 

(b) Calculation of the two-phase seminvariants 
(constituted by one-phase seminvariants) via their first 
representation. P+ (see § 2) is the outcome of this step 
for • = ~0u + ~p,. 

(c) Calculation of P$ according to (4). A subset is 
defined (subset {M2} ) which contains the most reliable 
two-phase seminvariants (in our tests those with I P$ - 
0.51 > 0.35, but a variable threshold may in general be 
used). 

(d) P-$,t [according to (10)] is calculated. In this step 
• and all the other two-phase seminvariants involved in 
the multipoles belong to {M2}. This restriction aims to 
avoid the probability of obtaining, for any • E {M 2 } a 
wrong probability caused by wrong estimates of some 
unreliable seminvariants. 

(e) e~,t is calculated for any 0. The sign indication 
arising from any multipole is used in (9) only if all the 
seminvariants are sufficiently reliable. In our tests no 
seminvariant is used for which I P$ - 0.51 < 0.30. 

( f )  A subset {M 1 } is defined which contains the 
most reliable one-phase seminvariants (i.e. IP + -- 0.51 
> 0.35). Then po+ [according to (12)] is calculated for 
any ~p., E {M1} via the most reliable two-phase 
seminvariants ~Pu + ¢P, for which ~p, E {M1}. These 
restrictions aim to avoid a wrong estimation of (pu 
caused by previous wrong estimates of the various ¢p, 
and (Pu + ~P,. 

(g) The other one-phase seminvariants ¢pu ~ [M1} 
are estimated according to (12), but always the ¢Pv'S E 
{M1}. This step is cyclic because the one-phase 
seminvariants can belong to IMp} or not, according to 
their current probability value. The procedure stops 
when no new one-phase seminvariant goes in {M~ }. In 
this step all the available two-phase seminvariants are 
used to assign the new (p,, s. 

6. Practical applications and conclusions 

The estimates of the one-phase seminvariants with I EI 
larger than a given threshold are given in Tables 4-10 
for each test structure. For each seminvariant the sign 
probabilities are shown calculated via: (a) the Zl 
relationships as used by the M U L T A N  system (Ger- 
main, Main & Woolfson, 1971); (b) the second 
representation as described by Burla et al. (1980); (c) 
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Table 4. RIBO: indices, IEI 's  and actual signs of  the 
one-phase seminvariants with IEI > 1.3 together with 

the various probability values 

The asterisks indicate incorrectly evaluated signs, and the character 
- the unpredicted signs. 

Second 
repres- Present 

K 1 entation procedure 
h k l E P+ P+ P+ 

0 0 2 -1.58 0.40 0.26 0.0 
4 0 2 -1-79 0.42 0.28 0.0 

10 0 2 -2.17 0.59* 0.28 0-0 
18 0 10 1.96 - 0.86 1.0 
4 0 10 -3.05 0.31 0.13 0.0 

14 0 6 2-29 0-62 0.88 1.0 
10 0 8 1.38 0.49* 0.91 1.0 
18 0 I~ -2.43 0.21 0.09 0.0 
10 0 10 -1-39 0-33 0.04 0.0 
8 0 6 1.37 0.57 0.82 1.0 
2 0 6 1.70 0.32* 0.52 0.90 
4 0 8 1.50 0.49* 0.39* 0.85 

22 0 8 1.55 0.53 0.37* 0.85 
12 0 6 -2.13 0.58* 0-52* 0.21 
6 0 10 1.80 0.60 0.46* 0.78 

22 0 6 --1.37 0.44 0.37 0.23 
8 0 8 1.35 0.56 0.57 0.75 

16 0 0 1.42 0.48* 0.33* 0.74 
16 0 2 --1.70 0.36 0.34 0.65* 
2 0 0 -2.01 0.43 0.30 0.47 

present  procedure  defines a set of  ten signs (all correct) 
suitable for active use in direct procedures.  

In Table 5 the results of our calculat ions for H E P T A  
( N  = 120, P21) are shown. The ~1 formula gives 
probabil i ty values which are substantial ly correct  but  
numerical ly  poor, for ten of the 11 one-phase semin- 
variants.  Our  procedure gives eight very reliable sign 
estimates suitable for active use, and all 11 signs are 
correct.  

For  M E T H O X  (N = 80, P21/c) 44 one-phase 
seminvar iants  were found with [EI > 1.60. We  only 
give in Table 6 the outcome for the most  reliable 15 
seminvariants .  It is remarkable  that  seven semin- 
var iants  in the list have unpredictable sign according to 
the Y l relationship. The situation is s trongly improved 
when the second representat ion is used. The procedure  
here described defines a subset of four very reliable 
seminvar iants  which can be actively used in a direct 
procedure.  

Table 7 shows the 14 estimates of the one-phase 
seminvar iants  with I EI  > 1.30 for K A R L E  ( N  = 68, 
P2~212). The ordinary  K~ formula is unable to predict  
the signs of  five seminvariants ,  whereas  the second 
representat ion correctly est imates 12 of  the 14 semin- 
variants.  By means  of our procedure a subset of  seven 
seminvar iants  with very high reliability is correctly 
defined. 

The results for T O X E  ( N  = 104, P2~2121) are shown 
Table 5. HEPTA: indices, IEI 's  and actual signs of the i n  Table  8. The )-~'1 formula gives correct  estimates of  
one-phase seminvariants with IEI > 1.3 together with 

the various probability values 

The asterisks indicate incorrectly evaluated signs. 

Second 
repres- Present 

Z l entation procedure 
h k l E P+ P+ P+ 

2 0 0 1.42 0.67 0.98 1.0 
8 0 0 1.33 0.68 0.97 1.0 

10 0 6 1.36 0.65 0.95 1.0 
4 0 0 1.44 0.64 0.89 1.0 
8 0 4 --1.36 0.30 0.12 0.0 

16 0 2 --1.61 0.22 0.03 0.0 
8 0 6 --2.62 0.46 0.09 0.0 
6 0 2 --1.51 0.23 0.01 0.0 
2 0 1-0 -1.60 0.69* 0.81" 0.27 

14 0 6 1.80 0.61 0.71 0.57 
2 0 8 2.24 0-68 0.77 0.53 

19 of  the 21 seminvariants  in the table, however the 
numerical  values of the sign probabilit ies are poor. Our  
procedure defines a subset of  17 seminvar iants  with 
very high reliability, all of  them correctly estimated. 

Table  6. METHOX: indices, IEI 's  and actual signs of  
the more reliable one-phase seminvariants among the 

44 with I EI > 1.6 

The asterisks indicate the incorrect signs and the character-  

h k l  
1 0 0 2  
6 0 8  
6 016 
2 210 
0 034 
9 218 

1 0 0 4  
6 0 2  
6 412 

the procedure described in the present  paper.  The lists 
of  seminvar iants  are in decreasing order of  reliability, 
calculated according to the new procedure.  

In Table  4 the outcome for R I B O  ( N  = 88, P21) is 
shown. The most  reliable sign according to the ~1 
formula is tha t  of  E18,0,~, the only one with I P + - 0.51 _2 4 4 
> 0.28.  Seven good signs estimated via the second 10 0 2 
- 6 018 
representat ion (al! correct) have I P+ - 0.51 > 0 .28 and 4 6 12 
three of them (i.e. Elo,o,~, Elo.o,i-o and E~8,o,~) are so ~ 022 
reliable tha t  they may  be used in an active way.  The 2 6 4 

indicates the unpredicted signs. 

Second 
repres- Present 

Xl entation procedure 
E P+ P+ P+ 

--2.31 - 0.11 0.01 
1.85 0.68 0.88 0.99 

--2-12 0.19 0.13 0-01 
1.75 0.73 0.93 0.96 
2.00 0.76 0.81 0.81 
1.65 - 0.78 0.78 
1.72 0.66 0.78 0.78 

--1.95 - 0.26 0.26 
2.10 0-71 0.74 0.74 
1-98 - 0.71 0.71 
2.81 0.68 0.70 0.70 
2.15 - 0.68 0.68 

- -  1 . 7 5  0 - 6 7 "  0 . 6 4 "  0 - 6 4 "  

1-71 - 0-36* 0-36* 
1.66 - 0.63 0.63 
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Table 7. KARLE: indices, IEI's and actual signs of 
the one-phase seminvariants with IEI > 1.3 together 

with the various probability values 

Table 9. TOL Y: indices, IEI's and actual signs of the 
more reliable one-phase seminvariants among the 22 

with IEI > 1.55 

The asterisks indicate incorrectly evaluated signs, and the character 
- the unpredicted signs. 

Second 
repres- Present 

Z~ entation procedure 
h k l E P+ P+ P+ 

4 0 12 - 1 - 5 3  0.38 0.07 0.0 
0 4 12 - 1 . 4 6  0.39 0.09 0.0 
0 4 4 - 1 . 5 1  0.51" 0.11 0.0 
4 2 0 - 2 . 5 4  0.11 0-01 0.0 
0 4 14 1.95 0.75 0.99 1.0 
4 0 0 1.81 - 0-91 1.0 
0 0 12 - 2 . 4 2  - 0.44 0.05 
4 0 4 - 1 . 8 7  - 0.39 0.15 
0 6 16 1-76 - 0.59 0.64 
0 2 8 - 2 . 0 5  0.55* 0.68* 0.41 
0 6 10 - 1 . 3 5  0.36 0.74* 0.43 
0 6 18 - 1 . 8 2  0-31 0-23 0.46 
0 2 10 1.33 - 0.67 0.54 
0 4 8 2-22 0.56 0.60 0.46* 

Table 8. TOXE: indices, I EI's and actual signs of the 
one-phase seminvariants with IEI > 1.55 together with 

the various probability values 

The asterisks indicate incorrectly evaluated signs, and the 
character - the unpredicted signs. 

Second 
repres- Present 

Z ~ entation procedure 
h k l E P+ P+ P+ 

4 0 14 --1.62 0.38 0.06 0-0 
2 0 0 - 2 . 0 0  0-21 0.01 0.0 
0 8 6 --1.60 0.16 0.01 0.0 
6 0 2 2.89 0.91 0.99 1.0 
8 0 0 2.14 0.92 0.98 1.0 
4 16 0 2.36 0-77 0.96 1.0 
4 0 2 - 1 . 8 6  0.13 0.06 0.0 
0 6 2 - 1 . 8 3  0.52* 0-00 0.0 
8 4 0 1.97 0.56 0.93 1.0 
6 0 10 1.91 0.79 0.93 1.0 
0 0 2 --1.63 0.41 0.08 0.0 
8 0 2 --1.99 0.22 0.12 0.0 
6 6 0 - 2 - 0 8  0.44 0.40 0.0 
0 6 10 - 1 . 7 7  - 0.34 0.0 
2 10 0 - 1 . 7 8  0.37 0.71" 0.0 
8 6 0 1.64 0.52 0.64 0.99 
0 10 6 --1.74 0-49 0.62* 0.08 
0 14 4 1.70 0.59 0.57 0.79 

10 8 0 1.57 0.45* 0.23* 0.57 
4 0 6 - 1 . 8 7  0.45 0.28 0.56* 

10 0 14 1.58 0.51 0.36* 0.55 

In Table 9 the outcome for the more reliable 13 
one-phase seminvariants among the 22 with I EI > 
1.55 is shown for TOLY (N = 208, P21212 0. The 
number of incorrect estimates is four for the ~'t 
relationship and two for the present method: only one 
via the Y l formula and five via our procedure have a 
sufficient reliability for active use. 

The asterisk indicates an incorrect sign. 

Second 
repres- Present 

~ entation procedure 
h k I E P+ P+ P+ 

0 0 12 3.38 0.81 0.97 1.0 
8 0 12 - 1 - 9 3  0.18 0.04 0.0 
8 0 2 --1.78 0-30 0.11 0.0 
0 14 0 2.03 0.79 0.99 1.0 
8 0 0 - 3 . 1 9  0.00 0.00 0.0 
0 8 2 - 2 . 7 6  0.40 0.32 0.24 
0 16 16 1.62 0.49* 0.18" 0.68 
2 2 0 - 1 - 9 3  0.51" 0.82* 0-33 

10 0 6 1.59 0.65 0.76 0.64 
0 8 14 - 1 . 9 1  0.46 0.37 0.37 
0 2 8 --1.93 0.53* 0-58* 0.62* 
0 20 6 - 1 - 5 5  0-64* 0.56* 0-61" 
4 8 0 --2.87 0.50 0.64* 0.40 

Table 10. AZET:  indices, IEI's and actual signs of  
the one-phase seminvariants  with IEI > 1 .3  together 

with the various probability values 

The asterisks indicate incorrectly evaluated signs, and the 
character - the unpredicted signs. 

Second 
repres- Present 

Z~ entation procedure 
k k 1 E P+ P+ P+ 

8 4 0 2.31 0.72 0.93 1.0 
30 0 0 1.55 0.78 0.98 1.0 
14 0 0 - 1 . 5 6  0.27 0.00 0.0 
0 8 0 1.38 0.97 1.00 1.0 
0 6 0 - 2 . 6 7  0.00 0.00 0.0 
0 4 0 3.46 1.00 1.00 1.0 

24 4 0 1.39 0.64 0.91 1.0 
4 4 0 1.31 0.62 0.85 1.0 

24 6 0 1.61 - 0.43* 1.0 
28 4 0 2.20 - 0.60 1.0 

8 2 0 - 2 . 7 8  - 0.33 0.0 
12 6 0 - 1 . 4 5  0.56* 0.41 0.0 
12 2 0 - 2 . 3 6  0.44 0.26 0.0 
30 2 0 - 1 . 5 6  0.40 0.18 0.0 
22 6 0 1.71 0.68 0.85 0.46* 

The results for AZET (N = 192, Pea20 in Table 10 
prove again the usefulness of the method. 14 one-phase 
seminvariants with I E I > 1.30 are correctly estimated 
with very high reliability. 

The efficiency of the proposed procedure is now well 
documented. Our calculations show that it is possible 
to have quite good estimates of some one-phase 
seminvariants which can be actively used in the process 
of phase determination. The computer time require- 
ment is quite modest: typical times are 30-40 s per 
structure by an IBM 370/158. 
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Besides the merits, Tables 4-10 also show some 
limits: 

(a) The present approach postulates the mutual 
statistical independence of the various phase relation- 
ships which concur to define tp u. This is not strictly 
true: the consequence is that the accuracy of the sign 
indication may often be overestimated. 

(b) The procedure may fail on some occasions. For 
example, a wrong estimate of ~0 u is possible when: (i) it 
is wrongly estimated via its second representation with 
a very high probability value; luckily that occurs rarely 
if I Eul is sufficiently large; (ii) a large percentage of 
two-phase seminvariants q~u + tPv is wrongly estimated 
with high probability values. This case is not frequent 
either. 

There are several ways for improving the present 
situation: e.g. (i) to improve the estimates of the 
one-phase seminvariants by application of the concept 
of generalized representations (Giacovazzo, 1980b,c); 
(ii) to obtain improved estimates of the two-phase 
seminvariants, e.g. via their second representations; (iii) 
by application of the three-phase seminvariants. 

The work in these fields is in progress. 
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DELCRI, an Enantiomorph-Specifie Figure of Merit 
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Abstract 

A figure of merit DELCRI, with estimates A 3 for the 
absolute values of the triplet phase sums ~03, is 
described for the selection of numerical values of 

0567-7394/81/050684-06501.00 

symbols used in a symbolic addition procedure. From 
tests with a number of structures crystallizing in polar 
space groups this figure of merit was found to enable 
the selection of enantiomorph-specific phase sets. 
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